1. Si las probabilidades de que, en condiciones de garantía, un automóvil nuevo requiera reparaciones del motor, la transmisión o ambos, son 0.87, 0.36 y 0.29,¿cuál es la probabilidad de que un auto requiera uno o el otro o ambos tipos de reparación durante el período de garantía? r=0.94
2. Al lanzar un par de dados balanceados, que probabilidades hay de obtener a. 7, b. 11, c. 7 u 11, d. 3, e. 2 o 12, f. 2, 3 o 12? r= a. 1/6 b. 1/18 c. 2/9 d. 1/18 e. 1/18 f. 1/9
3. Una agencia de renta de automóviles cuenta con 18 autos compactos y 12 autos de tamaño mediano. Si se seleccionan aleatoriamente cuatro de los automóviles para una inspección de seguridad, ¿que probabilidad hay de obtener dos de cada tipo? r=0.368
4. En un grupo de 160 estudiantes graduados de ingeniería, 92 se inscriben en un curso avanzado de estadística, 63 en un curso de investigación de operaciones; y 40 en ambos. ¿Cuántos de estos estudiantes no se inscriben en ningún curso?
r=45
5. Si A y B son eventos mutuamente excluyentes, p(A)= 0.29 y p(B)=0.43, determine, a. p(A´), b. p(AÈB), c. p(AÇB´), d. P(A´ÇB´). r= a.0.71 b.0.72 c.0.29 d.0.28
6. Un departamento de policía necesita nuevos neumáticos para sus patrullas, y existen 0.17, 0.22, 0.03, 0.29, 0.21 y 0.08 de probabilidades de que adquiera neumáticos de las siguientes marcas: Uniroyal, Goodyear, Michelin, General, Goodrich o Armstrong. Determine las probabilidades de que compre, a. neumáticos Goodrich o Goodyear, b. neumáticos Uniroyal, General o Goodrich, c. neumáticos Michelin o Armstrong, d. neumáticos Goodyear, General o Armstrong.
r=a. 0.43 b. 0.67 c. 0.11 d. 0.59
7. La probabilidad de que el chip de un circuito integrado tenga un grabado defectuoso es de 0.12, la probabilidad de que tenga un defecto de cuarteadura es de 0.29 y la probabilidad de que tenga ambos defectos es de 0.07. a. ¿Qué probabilidad hay de que un chip de fabricación reciente tenga ya sea un defecto de grabado o de cuarteadura?, b. ¿Qué probabilidad hay de que un chip de fabricación reciente no tenga ninguno de tales defectos? r=a.0.34 b.0.66
8. Las probabilidades de que una estación de Televisión reciba 0, 1, 2, 3, 4, ...........,8 o al menos 9 quejas tras la emisión de un controvertido programa son, respectivamente, 0.01, 0.03, 0.07, 0.15, 0.19, 0.18, 0.14, 0.12, 0.09 y 0.02. Qué probabilidades hay de que después de trasmitir ese programa la estación reciba a. como máximo 4 quejas, b. al manos 6 quejas, c. de 5 a 8 quejas. R=a. 0.45 b. 0.37 c. 0.55
9. La probabilidad de que un nuevo aeropuerto obtenga un premio por su diseño es de 0.16, la probabilidad de que obtenga un premio por su eficiente uso de materiales es de 0.24 y la probabilidad de que obtenga ambos premios es de 0.11. a. ¿Cuál es la probabilidad de que obtenga al menos uno de los dos premios?, b. ¿Cuál es la probabilidad de que obtenga solo uno de los dos premios?. r=a.0.29 b.0.18
10. Si la probabilidad de que un sistema de comunicación tenga alta fidelidad es de 0.81 y la probabilidad de que tenga alta fidelidad y alta selectividad es de 0.18. ¿Cuál es la probabilidad de que un sistema con alta fidelidad, tenga alta selectividad? r=2/9
11. Si la probabilidad de que un proyecto de investigación sea correctamente planeado es de 0.80 y la probabilidad de que sea planeado y correctamente ejecutado es de 0.72, ¿qué probabilidad hay de que un proyecto de investigación correctamente planeado, sea correctamente ejecutado? r=0.90
12. Entre 60 partes de refacción automotriz cargadas en un camión en San Francisco, 45 tienen a Seattle por destino y 15 a Vancouver. Si dos de las partes se descargan por error en Pórtland y la “selección” es aleatoria, ¿qué probabilidades hay de que a. ambas partes debieran de haber llegado a Seattle, b. ambas partes debieran de haber llegado a Vancouver, c. una debiera haber llegado a Seattle y la otra a Vancouver. r=a.33/59 b. 7/118 c.45/118
13. En una planta electrónica, se sabe por experiencia que la probabilidad de que un obrero de nuevo ingreso que haya asistido al programa de capacitación de la compañía, cumpla la cuota de producción es de 0.86 y que la probabilidad correspondiente de un obrero de nuevo ingreso que no ha asistido a dicho curso de capacitación es de 0.35. Si 80% de la totalidad de los obreros de nuevo ingreso asisten al curso de capacitación, ¿qué probabilidad existe de que un trabajador de nuevo ingreso cumpla la cuota de producción? r=0.758
14. Una empresa consultora renta automóviles de tres agencias, 20% de la agencia D, 20% de la agencia E y 60% de la agencia F. Si 10% de los autos de D, 12% de los autos de E y 4% de los autos de F tienen neumáticos en mal estado, ¿cuál es la probabilidad de que la empresa reciba un auto con neumáticos en mal estado? r=0.068
15. Si cada artículo codificado en un catálogo empieza con tres letras distintas y continua con 4 dígitos distintos de cero, encuentre la probabilidad de seleccionar aleatoriamente uno de los que empieza con la letra a y tiene un par como último dígito. R= 10/117
16. La probabilidad de que una industria estadounidense se ubique en Munich es de 0.7, de que se localice en Bruselas de 0.4, y de que se ubique ya sea en Bruselas o en Munich, o en ambas es de 0.8.¿Cuál es la probabilidad de que la industria se localice a. en ambas ciudades?, b. en ninguna de ellas r=a. 0.3 b. 0.2
17. Con base en experiencias pasadas, un corredor de bolsa considera que bajo las condiciones económicas actuales un cliente invertirá con una probabilidad de 0.6 en bonos libres de impuesto, en fondos mutualistas con una probabilidad de 0.3 y en ambos instrumentos con una probabilidad de 0.15. En este momento, encuentre la probabilidad de que el cliente invierta a. ya sea en bonos libres de impuesto o en fondos mutualistas, b. en ninguno de los dos instrumentos. r=a. 0.75 b.0.25
18. Para parejas de casados que viven en una cierta ciudad de los suburbios, la probabilidad de que el esposo vote en alguna elección es de 0.21, la de que su esposa lo haga , es de 0.28 y la de que ambos voten, de 0.15. ¿Cuál es la probabilidad de que a. al menos un miembro de la pareja vote?, b. vote una esposa dado que su esposo lo hace?, c. vote un esposo, dado que su esposa no lo hace? r=a.0.34 b.5/7 c.1/12
19. La probabilidad de que un médico diagnostique correctamente una enfermedad en particular es de 0.7. Dado que realice un diagnóstico incorrecto , la probabilidad de que el paciente levante una demanda es de 0.9. ¿Cuál es la probabilidad de que el médico realice un diagnóstico incorrecto y de que el paciente lo demande? r=0.27
20. Un pueblo tiene dos carros de bomberos que operan independientemente. La probabilidad de que un vehículo específico esté disponible cuando se necesite es de 0.96. a. ¿Cuál es la probabilidad de que ninguno esté disponible en caso necesario?, b. ¿Cuál es la probabilidad de que alguno lo esté cuando se le necesite? r=a.0.0016 b.0.9984
21. La probabilidad de que Tom sobreviva 20 años más es de 0.7 y la de que Nancy lo haga de 0.9. Sí se supone independencia para ambos, ¿cual es la probabilidad de que ninguno sobreviva 20 años? r= 0.03
22. Una valija contiene 2 frascos de aspirinas y tres de tabletas para la tiroides. Una segunda valija contiene 3 de aspirinas, 2 de tabletas para la tiroides y 1 de tabletas laxantes. Sí se toma un frasco aleatoriamente de cada valija de equipaje, encuentre la probabilidad de que; a. ambos frascos contengan tabletas para la tiroides, b. ningún frasco contenga tabletas para la tiroides; c. los dos frascos contengan diferentes tabletas. r= a.1/5 b.4/15 c. 3/5
23. La probabilidad de que una persona que visita a su dentista requiera de una placa de rayos X es de 0.6, la de que una persona a la que se le toma una placa de rayos X también tenga un tapón de 0.3; y la de que a una persona que se le toma una placa de rayos X y que tiene un tapón, tenga también un diente extraído, de 0.01. ¿Cuál es la probabilidad de que a una persona que visita a un dentista se le tome una placa radiográfica, presente un tapón y se le haya extraído un diente? r= 0.018
No hay comentarios:
Publicar un comentario