Características:
a) Al llevar a cabo un experimento con esta distribución se esperan más de dos tipos de resultados.
b) Las probabilidades asociadas a cada uno de los resultados son constantes.
c) Cada uno de los ensayos o repeticiones del experimento son independientes.
d) El número de repeticiones del experimento, n es constante.
Al igual que hicimos con la distribución binomial, en este caso partiremos de un ejemplo para obtener la fórmula general para resolver problemas que tengan este tipo de distribución.
Ejemplo:
Se lanza al aire un dado normal, 5 veces, determine la probabilidad de que aparezca dos números uno, dos números tres y un número cinco.
Solución:
Si pensamos en la forma que se han resuelto otros problemas, lo primero que se me ocurre es trazar un diagrama de árbol que nos muestre los 5 lanzamientos del dado; esto sería muy laborioso, y se muestra parte del mismo a continuación;
5 4
2º lanzamiento 6 5
5ºlanzamiento 6
2
3
4 1
1er lanzamiento 5 3 2º lanzamiento
6 6 5
Del diagrama de árbol se obtendría el espacio muestral y enseguida se determinarían las probabilidades requeridas. En lugar de lo anterior, obtendremos una fórmula a partir de la siguiente expresión:
p(aparezcan dos unos, dos tres y un cinco)=(número de ramas en donde haya dos unos, dos tres y un cinco)(probabilidad asociada a cada una de las ramas)
Para esto definiremos lo siguiente:
n = número de lanzamientos del dado
x1 = número de veces que aparece el número 1 = 2
x2 = número de veces que aparece el número 2 = 0
x3 = número de veces que aparece el número 3 = 2
x4 = número de veces que aparece el número 4 = 0
x5 = número de veces que aparece el número 5 = 1
p1 = probabilidad de que aparezca el número 1 = 1/6
p2 = probabilidad de que aparezca el número 2 = 1/6
p3 = probabilidad de que aparezca el número 3 = 1/6
p4 = probabilidad de que aparezca el número 4 = 1/6
p5 = probabilidad de que aparezca el número 5 = 1/6
p6 = probabilidad de que aparezca el número 6 = 1/6
Luego, ¿cómo obtendremos el número de ramas donde aparecen dos números 1, dos números 3 y un número 5?
Enunciando algunas de las ramas, tenemos lo siguiente;
(1, 1, 5, 3, 3), (5, 1, 1, 3, 3), (1, 3, 3, 1, 5), ... etc, etc.
¿Qué tipo de arreglos son estos, combinaciones, permutaciones o que?
SON PERMUTACIONES EN DONDE HAY OBJETOS IGUALES.
Por tanto el número de ramas se puede obtener de la siguiente manera:
El número de ramas = 
Y en forma general,
Luego la probabilidad asociada a cada una de las ramas, sería;
p(asociada a cada una de las ramas) = p(#1)p(#1)p(#3)p(#3)p(#5)=p1*p1*p3*p3*p5=
=p12*p32*p5
Por tanto la fórmula general será:
donde:
p(x1, x2,....,xk, n) = probabilidad de que en n ensayos aparezcan x1 objetos del primer tipo, x2 objetos del segundo tipo.......y xk objetos del último tipo.
n = x1+x2+....xk
Resolviendo el ejemplo;
n = 5
x1 = número de veces que aparece el número 1 = 2
x2 = número de veces que aparece el número 3 = 2
x3 = número de veces que aparece el número 5 = 1
p1= probabilidad de que aparezca el número 1 = 1/6
p2 = probabilidad de que aparezca el número 2 = 1/6
p3 = probabilidad de que aparezca el número 3 = 1/6
Ejemplos:
1. Las probabilidades son de 0.40, 0.20, 0.30 y 0.10, respectivamente, de que un delegado llegue por aire a una cierta convención, llegue en autobús, en automóvil o en tren. ¿Cuál es la probabilidad de que entre 9 delegados seleccionados aleatoriamente en esta convención a) 3 hayan llegado por aire, 3 en autobús, 1 en auto y 2 en tren?, b) 4 hayan llegado por aire, 1 en autobús y 2 en auto?, c) 5 hayan llegado en auto?
Solución:
a) n = 9
x1= # de delegados que llegan por aire = 3
x2= # de delegados que llegan en autobús = 3
x3= # de delegados que llegan en auto = 1
x4= # de delegados que llegan en tren = 2
p1 = probabilidad de que un delegado llegue por aire = 0.40
p2 = probabilidad de que un delegado llegue en autobús = 0.20
p3 = probabilidad de que un delegado llegue en auto = 0.30
p4 = probabilidad de que un delegado llegue en tren = 0.10
b) n=9
x1 = 4 por aire; p1 = 0.40
x2 = 1 en autobús; p2 = 0.20
x3 = 2 en auto; p3 = 0.30
x4 = 2 en tren; p4 = 0.10
c)
n=9
x1= 5 lleguen en auto; p1 = 0.30
x2 = 4 (lleguen por aire o autobús o tren); p2 = 0.40+0.20+0.10 = 0.70
2. De acuerdo con la teoría de la genética, un cierto cruce de conejillo de indias resultará en una descendencia roja, negra y blanca en la relación 8 : 4 : 4. Encuentre la probabilidad de que entre 8 descendientes, a) 5 sean rojos, 2 negros y un blanco, b) 3 sean rojos y 2 sean negros.
Solución:
a)
n = 8
x1 = 5 rojos; p1= prob. Sean rojos = 8/16 = 0.50
x2 = 2 negros; p2 = prob. Sean negros = 4/16 = 0.25
x3 = 1 blanco; p3 = prob. Sean blancos = 4/16 = 0.25
b)
n=8
x1 = 3 rojos; p1 = 0.50
x2 = 2 negros; p2 = 0.25
x3 = 3 blancos; p3 = 0.25
3.Según una encuesta preliminar acerca del voto que los ciudadanos darán por los candidatos para gobernador del estado se ha detectado que aproximadamente un 52% votará por el partido verde, un 40% por el partido azul y un 8% por los partidos restantes, si se seleccionan aleatoriamente 6 personas con edad de votar, determine la probabilidad de que: a) 2 voten por el partido verde, 1 por el azul y 3 por el resto de los partidos, b) 2 voten por el partido verde y 4 por el azul.
Solución:
a) n = 6
x1= 2 voten por partido verde; p1= prob. de que una persona vote por partido verde = 0.52
x2= 1 vote por partido azul; p2 = prob. de que una persona vote por partido azul = 0.40
x3= 3 voten por otros partidos; p3 = prob. de que una persona vote por otros partidos = 0.08
b)n = 6
x1= 2 voten por el partido verde; p1= prob. de que una persona vote por partido verde=0.52
x2= 4 vote por partido azul; p2 = prob. de que una persona vote por partido azul = 0.40
x3= 0 voten por otros partidos; p3 = prob. de que una persona vote por otros partidos = 0.08
en el ejemplo 1b el resultado esta mal da 0.0174182
ResponderEliminar